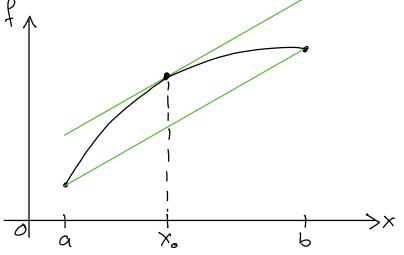
§ 5.4 Mean value theorem and applications
In the following we shall look at differentiable
functions on the interval
$$\Omega = (a,b) \subset \mathbb{R}$$
.
Proposition 5.9 (Mean value theorem):
Zet $-\infty < a < b < \infty$. Zet $f: [a,b] \longrightarrow \mathbb{R}$
be continuous and differentiable on (a,b) .
Then there exists $x_0 \in (a,b)$ with
 $f(b) = f(a) + f'(x_0)(b-c);$
that is,
 $f'(x_0) = \frac{f(b) - f(a)}{b-a}$
is the slope of the secant through $(a, f(a)),$
 $(b, f(b)) \in G(f)$



$$\frac{\Pr \circ of:}{1}$$
i) We first look at the case where $f(a) = f(b) = 0$.
Then, since f is continuous, there exist
 $x, \overline{x} \in [a, b]$ such that
 $f(\underline{x}) = \min_{a \le x \le b} f(x) \le 0$
and $f(\overline{x}) = \max_{a \le x \le b} f(x) \ge 0$
(recall that $f([a, b]) = \overline{j} \subset \mathbb{R}$ is an interval)
If $f(\underline{x}) = 0 = f(\overline{x})$, then $f = 0$; then also
 $f'(\underline{x}) = 0 = f(\overline{x})$, then $f = 0$; then also
 $f'(\underline{x}) = 0 \forall x \in (a, b)$.
Otherwise let without loss of generality $f(\overline{x}) > 0$
Then $a < \overline{x} < b$, and we have
 $0 \ge \lim_{x \to \overline{x}} \frac{f(\underline{x}) - f(\overline{x})}{x - \overline{x}} = f'(\overline{x}) = \lim_{x \to \overline{x}} \frac{f(\underline{x}) - f(\overline{x})}{x - \overline{x}} \ge 0$,
so $f'(\overline{x}) = 0$.
ii) Far general f consider the function
 $g: [a, b] \longrightarrow \mathbb{R}$ with
 $g(x) = f(x) - (f(a) + \frac{f(b) - f(a)}{b - a}(x - a))$.

Aparently, g is continuous on [a,b] and
differentiable on (a,b) with

$$g'(x) = f'(x) - \frac{f(b) - f(a)}{a - b}$$
, $x \in (a_{1}b)$.
Furthermore, $g(a) = 0 = g(b)$. i) \Rightarrow claim
As a first application we have
Corollary 5.1:
Xet f be as in Prop. 5.9.
If f'=0 on (a_{1}b), then f is constant.
Proof:
For $a \le x < y \le b$ there exists $x_{a} \in (x, y)$
with
 $\frac{f(y) - f(x)}{y - x} = f'(x_{a}) = 0$
 \Rightarrow claim follows.
Proposition 5.10:
Xet f: $[a_{1}b] \rightarrow \mathbb{R}$ be continuous and
differentiable on $(a_{1}b)$.
i) If $\forall x \in (a_{1}b)$ f'(x) ≥ 0 (on f'(x) >0, f'(x) $\le 0, f'(b) < 0, f'($

(ar strictly monotonically increasing,
monotonically decreasing,
strictly monotonically decreasing)
on [a, b].

ii) Is f monotonically increasing (a decreasing),
then we have
$$f'(x) \ge 0$$
 (a $f'(x) \le 0$)
for all $x \in (a, b)$.

Proof:
i) We just look at the case $f'(x) > 0 \forall x \in (a, b)$
(the other cases are analogous).
Assume that f is not strictly monotonically
increasing. Then $\exists x_1, x_1 \in [a, b]$ with $x_i < x_i$
and $f(x_i) \ge f(x_2)$. Prop. $5.9 \Longrightarrow \exists x_i \in [x_i, x_2]$
s.t. $f'(x_i) = \frac{f(x_2) - f(x_i)}{x_1 - x_i} \le 0$.

This is a cartradiction to $f'(x_i) > 0$.

 \Rightarrow f is strictly monotonically increasing.

ii) Let f be monotonically increasing.

Then we have for all $x_i x_i \in (x_i, x_2), x \neq x_i$:

$$\frac{f(x) - f(x)}{x - x_o} \neq 0$$
Taking the limit $x \rightarrow x$ then gives $f'(x_o) \neq 0$.
Remark 5.4:
Is f strictly monotonically increasing, then
it does not automatically follow that $f'(x) > 0$
for all $x \in (x_i, x_i)$. This is shown by the
example of the strictly monotonic function
 $f(x) = x^3$ for which we have $f'(o) = 0$.
Example 5.13:
i) For a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$
and a $x \in \mathbb{R}$ we have $f' = x f$, so
 $\forall t \in \mathbb{R} : f'(t) = x f(t)$
Then
 $\forall t \in \mathbb{R} : f(t) = f(o) e^{xt}$
 $\frac{Proof:}{e^{xt}}$
(onsider the differentiable function g with
 $g(t) = \frac{f(t)}{e^{xt}} = e^{-xt} f(t), t \in \mathbb{R}$

Then we have $g'(t) = \frac{d}{dt}(e^{-\lambda t}) \cdot f(t) + e^{-\lambda t}f(t)$ $= e^{-\lambda t} \left(-\lambda f(t) + f'(t) \right) = 0$ for all teR; so g(t) = g(o) = f(o)due to e°=1 and Corollary 5.1, and $\forall t \in \mathbb{R} : f(t) = e^{\lambda t}g(t) = f(0)e^{\lambda t}$. ii) The function $f: x \mapsto \frac{2x}{1+x^2}$ satisfies $\int_{1}^{1} (x) = \frac{2(1+x^{2}) - 4x^{2}}{(1+x^{2})^{2}} = \frac{2(1-x^{2})}{(1+x^{2})^{2}} < 0$ for x > 1; thus $f: (1, \infty) \longrightarrow (0, 1)$ is strictly monotonically decreasing. Corollary 5.2 (l'Hospital rule): Let f, g: [a, b] -> R be continuous and differentiable on (a, b) with $g'(x) \neq 0$ for all $x \in (a, b)$. Further, let f(a) = 0 = g(a), and let $\lim_{x \to a} \frac{f'(x)}{g'(x)} =: A$.

Then
$$g(x) \neq 0$$
 for all $x > a$, and we have

$$\lim_{x \neq a} \frac{f(x)}{g(x)} = A$$

$$\frac{\operatorname{Proof:}}{\operatorname{i}}$$
i) If $g(x) = 0$ for some $x > a$, then there
exists according to Prop. 5.9 a $x_{i} \in (a_{i}x)$
with $g'(x_{o}) = 0$ in contradiction to our
assumption.
ii) For fixed $s > a$ consider the function
 $h(x) = \frac{f(s)}{g(s)}g(x) - f(x), \quad x \in [a, s].$
The function $h: [a, s] \longrightarrow \mathbb{R}$ is continuous
and differentiable on (a_{i}, s) with $h(a)=0$
and $h(s) = 0$. According to Prop. 5.9 there
exists an $x = x(s) \in (a_{i}, s)$ such that
 $0 = h'(x) = \frac{f(s)}{g(s)}g'(x) - f'(x);$
That is, $\frac{f(s)}{g(s)} = \frac{f'(x)}{g'(x)} \cdot \text{ With } s \rightarrow a$ we then
have $x(s) \rightarrow a$, and
 $\frac{f(s)}{g(s)} \longrightarrow \lim_{x \neq a} \frac{f'(x)}{g'(x)} = A$.

Example 5.14: i) We have $\lim_{x \to 1} \frac{x^{2} - 1}{x - 1} = \lim_{x \to 1} \frac{2x}{1} = 2.$ ii) We have $\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{\cos(x)}{x} = 1.$ iii) We can also apply the l'Hospital rule several times. With ii) we get $\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \lim_{x \to 0} \frac{\sin(x)}{\cos^2} = \frac{1}{2}$ However, in many cases we don't need the l'Hospital rule and can reach our conclusions with other methods: iv) $\lim_{x \to 0} \left(\frac{e^{-\frac{1}{x}}}{x^{\kappa}} \right)^{\frac{y}{z} = \frac{1}{x}} \lim_{y \to \infty} \left(\frac{y^{\kappa}}{y^{\kappa}} \right)^{\frac{y}{z} = 0} = 0$